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Abstract-Two-dimensional convective flows in shallow cavities with conducting horizontal boundaries 
and driven by differential heating of the two vertical end walls, are studied numerically over a range of 
Rayleigh numbers and Prandtl numbers. As the Rayleigh number increases, nonlinearity first affects the 
flow structure in the turning regions near the ends of the cavity. These ‘end-zone problems’ have been 
investigated by a combined computational and analytical approach. Numerical solutions are found using 

a Dufort-Frankel-Multigrid method, and appear to be in good agreement with stability analysis. 

1. INTRODUCTION 

CONVECTIVE motions driven by lateral temperature 
gradients in slender cavities are important in many 

areas of interest in industry and in nature. Appli- 
cations include the temperature control of circuit 
board components under natural convection in the 
electronics industry, heating and ventilation control 

in building design and construction, cooling systems 
for reactors in the nuclear industry, flows and heat 
transfer associated with all stages of the power gen- 
eration process, solar-energy collectors in the power 
industry and atmospheric and fluvial dispersion in the 

environment. 
Owing to the wide range of applications, studies of 

natural convection flow and heat transfer have been 

vigorously pursued for many years. Experimental 
investigations of cavity flows driven by lateral heat- 

ing have been reported by Elder [l], Imberger [2], 
and more recently by Patterson and Imberger [3], 
Simpkins and Chen [4], Armfield [5] and Patterson 
[6]. In general, these flows consist of a main circulation 
in which fluid rises at the hot wall, sinks at the cold 
wall, and travels laterally across the intervening core 
region. 

Extensive numerical results have been obtained by 
researchers during the past twenty-five years for cavity 
flows of different aspect ratio L (length/height), Ray- 
leigh number R and Prandtl number CT. Quon [7] 
carried out finite difference computations for con- 
vection in a square cavity for a variety of dynamical 
boundary conditions, Rayleigh numbers and Prandtl 
numbers. Cormack et al. [8] obtained numerical solu- 
tions in shallow cavities for a variety of Rayleigh 
numbers while de Vahl Davis and Mallinson [9] 
studied the stability and transition of tall cavity 
flows numerically. A comparative numerical study of 
convection flows in a square cavity was described by 
de Vahl Davis and Jones [lo]. More detailed numeri- 
cal studies of cavity flows have been carried out by 

Vest and Arpaci [l l] and Bejan and Tien [12], while 

Shiralkar et al. [ 131 investigated numerically the high 
Rayleigh number regime. Drummond and Korpela 
[14] have discussed numerical results for a shallow 
cavity with a variety of Rayleigh numbers and Prandtl 
numbers and further numerical studies have been car- 
ried out by Gaskell and Wright [i 51, and Winters [ 161. 

For a shallow cavity (L + co) and Rayleigh num- 
bers R -CC L the flow is dominated by conduction and 

consists of a Hadley cell driven by the constant hori- 
zontal temperature gradient set up between the end 
walls. Cormack et al. [17] predicted that the flow 
consists of two distinct parts: a parallel flow in the 
core region which extends for most of the length of 
the cavity and a second, non-parallel flow near the 
ends. Non-linear convective effects first become sig- 
nificant at the ends of the cavity where the flow is 
turned when R, = R/L = O(1). Hart [18] found that 
for small 0 the Hadley cell is susceptible to a variety 
of instabilities. For Rayleigh numbers greater than a 
critical value R, = R,,(a) the parallel core flow is 

destroyed and replaced by stationary multiple cells 
(Daniels er al. [19]). These transverse rolls are actu- 

ally an integral part of the steady-state solution in the 
cavity, unlike the longitudinal and time-dependent 
instabilities which may also occur. Their existence was 
confirmed by numerical simulations of the end-zone 
flow at low Prandtl numbers by Hart [20]. During 
recent years, new work has focused on the nonlinear 
end-zone structure in cases where the multiple-cell 
instability is avoided. Then, as the Rayleigh number 

increases, the extent of the end-zones increases and as 
R, + co a complicated asymptotic structure develops. 
For the case where the horizontal walls of the cavity 

are perfectly conducting, certain properties of the end- 
zone solution for R, = O(1) have been discussed by 

Gargaro [21] but little analytical progress has been 
made in identifying the limiting structure of the solu- 
tion as R, + co. The above problem is typical of a 
wide class of ‘end-zone’ problems where solutions of 
the governing equations and boundary conditions 
generally require a numerical approach. 
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II height of cavity 
I length of cavity 

L aspect ratio of cavity, I/!? 

NU Nusselt number 
R Rayleigh number 

RI scaled Rayleigh number 

T* dimensional temperature 
T, T non-dimensional temperature 

I*. Z* dimensional coordinates 

X, Z non-dimensional coordinates 

NOMENCLATURE 

I/*. I(.* dimensional velocity components. 

Greek symbols 

i? 

wave number 
coefficient of thermal expansion 

/i thermal diffusivity 

I kinematic viscosity 

(T Prandtl number 

IG. $ non-dimensional stream function 

6). (IJ non-dimensional vorticity function. 

This paper describes numerical solutions of the full 
nonlinear Boussinesq equations in the end-zone for 

the case of conducting horizontal boundaries and for 
a range of Rayleigh numbers. Results are obtained 
for both low Prandtl number (0 = 0.05) and for the 

case of air ((T = 0.733) and are compared with the 
stability theory of Hart [ 181 for which refined cal- 
culations have been reported in refs. [21&25]. 

2. FORMULATION 

The cavity is defined by the region 0 d .Y* d I, 
0 d Z* d h, with the vertical sidewalls .Y* = 0 and 
.Y* = 1 maintained at constant temperatures T,, and 

T,+AT, respectively. Non-dimensional variables of 

temperature, velocity, length and time are defined by 

T* = To +ATT(_Y, 7. t), (1) 

(.Y*, z*) = h(.Y, z). (3) 

,*,!C[ 
k ’ 

where K is the thermal diffusivity. By defining a stream 

function $ such that 

the governing equations, subject to the Boussinesq 

approximation, can be written in non-dimensional 
form as 

vlj = -5. (7) 

;iT _- 
5 +J(T. $) = VZT, (8) 

where the Prandtl number (T and the Rayleigh number 
R are defined by 

and 0 is the vorticity. Here 11 is the kinematic viscosity, 
fl is the coefficient of thermal expansion, and ,q is the 

acceleration due to gravity. 
The boundary conditions on the vertical end wails 

arc 

$= E{= 0 on .x = 0,L. 

T = 0 on .V = 0. (11) 

7 = 1 on .\- = I_. (12) 

and the rigid horizontal surfaces are assumed to be 

conducting so that 

(13) 

where L = I/h is the cavity aspect ratio. 

These equations and boundary conditions have 
solutions which possess the centrosymmetric prop- 
erties 

$(.Y,I, f) = $(L-x. I -_=. I). 

F(x,z,r)= l-T(Z,-.r.l-:.t). 

I 

(15) 
G(.u,r,t) = tG(L-x, I--_.I). 

so that in general for the steady-state solution only 
half of the flow domain needs to bc considered. The 
motion is controlled by the three parameters ~7, R and 
L. The Hadley regime, defined by L + ‘CC with fixed 
R. has been discussed in detail by Cormack ct al. 
[17]. It can be shown that their approach fails when 
R = O(L) (Daniels et al. [19]), and the present work 
is concerned with the distinguished limit L + ‘K such 

that 

R, =; = O(I). (16) 
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Unlike the Hadley structure these flows contain strong 
nonlinear effects in the end regions. 

3. CORE SOLUTION AND END-ZONE 

STRUCTURE 

Away from the end walls it is appropriate to use as 
independent variables, 

r=;, z=z (17) 

and the steady-state solution is found by expanding 
formally the stream function and the temperature as 

Substituting into (6)-(8), and using the centro- 
symmetry relations together with the requirement that 

T,=O at t=O (19) 

gives at leading order 

r,=5, $o=R,F(z) (20) 

and at second order 

T, = R,G(z) (21) 

where 

F(z) = $1 -z)’ (22) 

and 

G(z) =&&z4+;z3-& (23) 

(b) 

((3 
1. I I I t I 

0. 

0. 

0. ‘(i’\‘lil;l\ ! I 
E i i L L 

0. 

0. 
, 0.0 I 1 1 .o 2.0 , / I r 

3.0 4.0 5.0 6.0 

FIG. 1. Contours of the steady-state solution for {a) stream function, (b) vorticity, (c) temperature, for 
(r = 0.05 and R, = 200, using a 180 x 30 computational grid with x, = 6. 
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Thus in the core region 

and this solution is actually an exact steady-state solu- 

tion of the full equations (6))(8). It represents a hori- 
zontal two-way how with fluid moving towards the 
cold wall in the top half of the cavity (z > 1;‘2) and the 
hot wall in the bottom half (z < l/2). The temperature 
field varies linearly with t and is also vertically strati- 
fied. Near the ends of the cavity the fluid must be 
turned and the solution (20) is clearly invalid. Indeed, 
the core solution is only valid if a consistent solution 
can be found in end-regions near each vertical wall. 

Since the overall motion can be assumed ccntro- 
symmetric only the solution at the cold end of the 
cavity needs to bc considered, where the temperature 

and stream function can be expanded in the form 

T-= I> ‘7Q.z.t)+ “‘. lJ== l/J(.\-,z.r)+ “‘, 

tn = (I)(.\.. 1. I) -c- (35) 

It then follows from (6))(14) that the motion is 
governed by the full nonlinear Boussinesq equations 

7 

v-l) = --- ,,I. (27) 

iT 
i, +J(T, 11) = V’T. (28) 

in the region .Y > 0. 0 < 7 d I with boundary con- 

ditions 

I,/ = ;! = 0. T = Y on : = 0. I. (29) 

__ 

0. 

0. 
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FIG. 2. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for 
CT = 0.05 and R, = 400, using a 180 x 30 computational grid with x,, = 6. 
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and 

*=g=T=O on x=0, (30) 

$ + R,F(z), T- x+R,G(z) (x-+ cc). (31) 

Here (29) and (30) are the relevant boundary conditions 
on the cavity walls while (31) ensures that the solution 
matches with that in the core. Thus the regime where 
R, is O(1) is identified by the presence of nonlinear 
inertial and convective effects in roughly square zones 
at each end of the cavity and the flow is determined 
by the solution of the full Boussinesq system (26)- 

(31), which in general needs to be solved by a numeri- 
cal technique. This is considered in the next section. 

Certain properties of the end-zone problem have 
been studied by Gargaro [21] who considered the 
manner in which the steady solution approaches the 

parallel core flow (24). This is found by considering 
the forms 

ti - RrF(z)+4(z)exp(-ax) 
T-x+R,G(z)+B(z)exp(-ctx) i 

(x -+ co). 

(32) 

Substitution into (26)-(28) shows that the eigenvalue 
CI is determined by the solution of the system 

@“‘+2&#~“+a~~+aR,Q 

= aR,(F"'cj-F'(qY+a*$))/a (33) 

Q”+cr*6-&= ctR,(G'r$-F'0) (34) 

with 

Q=d=$‘=O on z=O,l. (35) 

A triply-infinite family of eigenvalues a with positive 
real part is found to exist for R, < R,,(o), indicating 

(4 
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FIG. 3. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for 
cr = 0.05 and R, = 500, using a 180 x 30 computational grid with x, = 6. 
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that an end-zone solution can then be found consistent 
with exponential decay to the parallel core flow. At 
the critical Rayleigh number R,,, the real part of the 
leading eigenvalue tends to zero, leaving a purely 
imaginary solution M = icr,, equivalent to oscillatory 
behaviour associated with instability of the parallel 
core flow in the form of transverse rolls (Hart [IX]). 
and for R, > R,,(a), the parallel flow is destroyed by 
multiple eddies which are forced into the core from 
the end-zones. The function R,,(g) is given by Gar- 

garo [21] and exists only in the region 0 < CT < 0.27. 
tending to infinity as 0 + 0.27 and approaching 79800 
as CJ + 0 (Hart [18]). For g > 0.27 an end-zone solu- 
tion consistent with a smooth approach (31) to a. 

parallel core flow is possible for any Rayleigh number 
R,. For lower Prandtl numbers the outer behaviour 
(31) is only possible when R, -c R,,(a). 

For low Rayleigh numbers R, -+ 0, the steady solu- 
tion of the end zone problem can be developed as 
a power series in R, in the manner described by 
Cormack ct rd. [ 171. In this case 

i-=.\-+R,T,(.x.:)+ ‘... I// = R,li/,(_\‘.:)-t ... 

(36) 

where II,, satisfies the equation 

V”$, = I 

with boundary conditions 

(a) 

(37) 

$I = tg = 0. z = 0. I, (38) 

lb, = 
al/b, 

~~- = 0, ,,- z (J. 
i.r (39) 

1 
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0. 
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FIG. 4. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for 
cr = 0.733 and R, = 500, using a 90 x 30 computational grid with x, = 3. 
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$1 --+Jw (X’=)). (40) 

The solution given by Cormack et al. f17] is equivalent 
to a symmetric turning motion. 

4. NUMERICAL SCHEME FOR THE END-ZONE 

PROBLEM 

In order to solve the system (26)-(31) nume~cally, 
a finite difference method is considered. For evolution 
equations, Crank-Nicolson and Pe%eman-Rach- 
ford methods have been used extensively, but more 
recently another method called the Dufort-Frankel 
method, as outlined in ref. [26], has been developed. 
Like the Crank-Nicolson and Peaceman-Ra~hford 
methods, it has second-order accuracy but since it is 
an explicit method, it must meet the Courant con- 

(a) 

dition to achieve numerical stability. Although the 
size of the time step is restricted by this condition, it 
is still a very effective and fast method. 

For elliptic equations, a five-point scheme can be 
adopted in which centred differences are used to 
approximate the original partial differential equation. 
Convergence of the Successive Over-Relaxation can 
be improved by use of fine and coarse grids within a 
~ultig~d scheme (Brandt 1271). Here the Dufort- 
Frankel method is used to solve the evolution equa- 
tions (26), (28), and the Multilevel method to solve 
the Poisson equation (27). The outer form (31) at 
x = m is handled by a finite truncation of x so that 
the conditions 

87, 
~--l, $=R,F(-$, (41) 

s.w 

0. 

0. 
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i 
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FIG. 5. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for 
u = 0.733 and R, = 3000, using a 90 x 30 computational grid with x, = 3. 
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are applied in the computational domain at 
x = x, < m. It is then necessary to ensure that x, is 
chosen sufficiently large that the computed solution 
does indeed approximate the actual solution of (26) 
(31). The main interest is in the steady-state solution, 

and the computation is stopped when the maximum 
difference between values of the solution at successive 
time steps is less than a specified tolerance, usually 

taken to be 1Om6 for the temperature and vorticity 
fields. Further details of the numerical techniques 
involved in solving the whole system are discussed by 

Wang [28]. 
For a steady-state solution, integration of the heat 

equation over the end zone gives 

I 

V’Tdxd,_ = (42) 

and using the outer form (3 I) gives 

=I+ $ 
?T 

i’ i 
d:= I+ 

R; 

,I i: j- , I 209 600 
(43) 

Once a steady-state numerical solution of the end zone 
is obtained, the integrals on the left hand side ot 

equation (43) can be calculated using Simpson’s rule. 
The above relation can then be used to provide a 

check on the accuracy of the numerical solution. 

5. NUMERICAL RESULTS AND DISCUSSION 

This section presents the results of numerical cal- 
culations of the end zone solution for two Prandtl 
numbers, g = 0.05 and cr = 0.733, and for a range of 

Rayleigh numbers, RI. The outer boundary Y , is 

0. I 
, I / I I I 

0.0 
1 I 

1 .o 2.0 2.0 1.0 S.0 6.0 7.0 

FIG. 6. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for 
(r = 0.733 and R, = 7000, using a 175 x 25 computational grid with x,, = 7. 



varied according to the value of the Rayleigh number 
in order to accommodate the outer boundary con- 
dition (3 1). 

Gargaro’s analysis [21] indicates that in the absence 
of multicellular motion (0 > 0.27) the leading eigen- 
value CL which determines the decay rate of the end 
zone solution as x + cc is of order R; ’ as R, + co. 
Thus the lateral extent of the end zone is proportional 
to R,, necessitating the use of an extensive com- 
putational domain at large Rayleigh numbers. 

For low Prandtl number (a = 0.05) there is the 
possibility of spatial oscillations when the Rayleigh 
number R, reaches the critical value R,,(0.05) z 455 
(Gargaro [21]). Contour plots of stream function, 
vorticity and temperature with rr = 0.05 and Rayleigh 
numbers ranging from 200 to 500 are shown in Figs. 
l-3. Here, an outer boundary x, = 6 is used. Figure 
1 shows the near-symmetric flow associated with the 
low Rayleigh number limit (36) ; the temperature field 

is primarily linear in x together with a small vertical 
gradient associated with the term R,G(z). In Fig. 2, 
where the Rayleigh number is increased to 400, the 
streamline field indicates the development of weak 
eddies along z = 0.5. This secondary flow increases in 
amplitude as the Rayleigh number increases, as shown 
for RI = 500 in Fig. 3. The critical wavelength 
predicted by linear stability theory at R,, = 455 is 
z = 211/u, = 2.33, consistent with the evidence of the 
numerical results obtained here. The results are also 
in good agreement with those obtained by Drummond 
and Korpela [14] by solving the full cavity problem 
for a range of large aspect ratios. 

Numerical results have been obtained for air 
(0 = 0.733) for a range of Rayleigh numbers from 500 
to 14000. Outer boundaries varying from x, = 3 to 
7 were chosen for these computations. Figures 47 
illustrate the contour fields of stream function, vor- 
ticity and temperature in the end region. These are 

Thermal convection in shallow cavities with conducting boundaries 395 

W 
1 

0 

0 

0 

0 

0 

FIG. 7. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for 
c = 0.733 and R, = 14000, using a 175 x 25 computational grid with x, = 7. 
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quite different from those with Q = 0.05 and, in par- 
ticular, the flow is free from multiple eddies since 
(T > 0.27. In Fig. 4, where R, = 500, the flow approxi- 
mates the symmetric low Rayleigh number form (36) 
and the main turning motion occurs in the region 
0 < x < 1 close to the cold wall. As the Rayleigh 

number is increased, an inward penetration of non- 
linear convective effects from the end of the cavity is 
observed. The non-parallel region extends into the 
cavity, as shown in the results for 3000 < R, < 14000 
in Figs. 5-7. The vertical temperature variation 
increases and there is a tendency for the turning 

(4 

A : R, = 14000 

x :R1= 7000 

o:RI=3000 

* .R,= 500 

(b) 

A : R, = 14000 

x : R, = 7000 

0 : R, = 3000 

* : R, = 500 

Fm. 8. The skin friction w/H, with d = 0.733 for different Rayleigh numbers on the horizontal walls : (a) 
top wall, (b) bottom wall. 
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motion to dip towards the lower boundary near the on the bottom wall at sufficiently high Rayleigh 
cold wall. Profiles of the skin friction on the horizontal numbers. 
walls (Fig. 8) show a sharp change on the lower Figure 9 shows the skin friction and the local Nus- 
boundary close to the cold wall and at higher Rayleigh selt number on the cold wall and local Nusselt num- 
numbers there is a further sharp decrease just down- bers for the horizontal walls are shown in Fig. 10. The 
stream, suggesting the possibility of a flow separation heat flux changes remarkably little on the top wall for 

(4 I 

A:R,= 14000 

x :R,= 7000 

o:R,=3000 

*:a,= 500 

(W 

30+ A :R,= 14000 

26. x :R,= 7000 

26. o : R,= 3000 

2,. *:R,=SOO 

22. 

16. 

0, 
0.0 0.1 0.2 0!3 0.4 015 0:6 0:7 0:6 

2 
0.6 ,:O 

FIG. 9. The profiles of (a) skin friction w/R, and (b) local Nusselt number ~T/%x(,=, with (r = 0.733 for 
different Rayleigh numbers on the cold wall. 
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different Rayleigh numbers, but on the bottom wall, wall is given in Table 1. Formula (43) was used to test 
there are significant changes near the cold comer the accuracy of the numerical results, and values of 
where heat is transferred out of the cavity for Rayleigh each side of the equation are listed in Table 2. This 
numbers greater than about 3000. The behaviour of the indicates good consistency. discrepancies being 
local Nusselt number on the cold wall indicates how attributable to the limitation in the number of grid 
the outward heat transfer is significantly enhanced as points and the finite extent of the outer boundary at 
RI increases ; the overall Nusselt number for the cold .Y = .Y ( 

A : RI = 14000 

x : R, = 7000 

-t D : R, = 3000 

+: R, r 300 

-5 

A:&=14000 

x : R, = 7000 

-t a:R, = 3000 

t: R, = 500 

-5 

FIG. 10. The locai Nusselt number a’l’jdz with CT = 0.733 for different Rayleigh numbers on the horizontnf 
walls : (a) top waii. (b) bottom wall. 
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Table 1. The overall Nusselt number at the cold Table 2. Comparison of the two sides of equation (43) for 
wall for air different Rayleigh numbers and Prandtl numbers 

RI 

500 1.0733 
3000 2.3418 
7000 5.7074 
14000 15.2633 

In conclusion, the present numerical results confirm 
predictions of the onset of low Prandtl number mul- 
ticellular convection and at higher Prandtl numbers 
shed light on the nonlinear development of the flow 
with increasing Rayleigh number. In particular the 
results confirm the outward penetration of non-par- 
allel effects on a scale proportional to the Rayleigh 
number and the development of thin boundary-layer 
structures near the walls of the cavity. In addition, the 
results for the Nusselt number determine the influence 
of convection in the end-zones on the lateral heat 
transfer across the cavity for a range of values of the 
scaled Rayleigh number R, = R/L. 
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